III B.Tech - I Semester – Regular Examinations – JANUARY 2022

ELECTRICAL MEASUREMENTS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place

PART – A

- 1. a) Define recording and integrating instruments with one example.
 - b) State two applications of CT and PT.
 - c) What is the purpose of compensating coil in wattmeter?
 - d) Write the advantages of Maxwell's bridge?
 - e) What are the properties of a passive transducer?

PART – B <u>UNIT – I</u>

- 2. a) Explain how the ranges of ammeters and voltmeters can 6 M be extended?
 - b) Design an Aryton shunt to provide an ammeter with the 6 M current ranges 1 A, 5 A and 10 A. A basic meter resistance is 50 Ω and full scale deflection current is 1 mA?

OR

3.	a)	Explain the purpose of lag adjustment devices in an	6 M
		Induction type of energy meter. Explain the different	
		ways of achieving it?	
	b)	List the advantages & disadvantages of MI type	6 M
		instruments.	
		<u>UNIT – II</u>	
4.	a)	Why secondary of C.T should not be open?	4 M
	b)	A current transformer with single turn primary has 300	8 M
		secondary turns and $R = 1.5$, iron loss of 1.2W and	

 $X = 1\Omega$. When secondary carries 5 A current, magnetising m.m.f at of 100 A and calculate ratio and phase angle errors.

OR

- 5. a) With neat figure explain the working of Potential 6 M Transformer.
 - b) A potential transformer of ratio 1000/100 has primary 6 M resistance 94.5 Ω , secondary resistance 0.86 Ω , primary reactance 66.2 Ω , total equivalent reactance 110 Ω , and no load current 0.02A at 0.4 power factor. Calculate the phase angle error at no load.

UNIT-III

- 6. a) Explain the construction and working of moving iron8 M type power factor meters with neat diagram.
 - b) Explain the advantages and disadvantages of moving 4 M iron type power factor meters.

OR

7. a) What are the different methods of measurement of 4 M frequency in the power frequency range.

b) Explain the working of Weston Type Frequency meter 8 M with neat diagram.

$\underline{UNIT} - IV$

- 8. a) Explain how the inductance is measured in terms of 6 M known capacitance using Maxwell's bridge?
 - b) Explain the kelvins double bridge method for the measurement of low resistance with a neat diagram.

6 M

OR

- 9. a) A Maxwell bridge is used to measure inductive 8 M impedance. The bridge consists at balance are R1 = 47 k Ω and $C1 = 0.01 \ \mu$ F in arm AB, $R2 = 5.1 \ k\Omega$ in arm BC, $R3 = 100 \ k\Omega$ in arm AD. Find the unknown impedance?
 - b) Explain how an unknown resistance can be measured 4 M by Wheatstone bridge.

<u>UNIT – V</u>

- 10. a) Explain in detail about the factors to be considered 6 M while selecting a transducer.
 - b) Discuss in detail about the advantages and limitations 6 M of Thermistor.

OR

- 11. a) Describe with neat sketch, the working of digital phase 6 M angle meter.
 - b) Explain with neat diagram the operation of a DVM. 6 M State the advantages of DVM.